
2020-10-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Dynamic memory
allocation

2
Dynamic memory allocation

Outline

• In this lesson, we will:

– Revisit static memory allocation (local variables and parameters)

– Introduce dynamic memory allocation

– Introduce the new and delete operators

3
Dynamic memory allocation

Addresses

• In this course, you will never need to “know” a specific address

– We will call functions or operators that return addresses

– Those addresses will then be stored in pointers

– We will then access and manipulate what is at that address
 using the pointers

• Thus, never worry about what an address might be

– You will only look at addresses if you are debugging your code

– Even then, you don’t care about the exact values,

 you will simply be comparing the addresses against each other

4
Dynamic memory allocation

Static memory allocation

• Up to this point, all memory has been in the form of parameters or
local variables

– The compiler arranges for memory to be allocated when the
program executes

– Memory is allocated on call stack

– When a function exits,
 the only data that remains are any values that are returned

• Such allocation is called static

– Arrangements for such memory are made by the compiler

– You cannot change how that memory is allocated
 when the program is executing

2020-10-01

2

5
Dynamic memory allocation

Limitations of static memory

• Suppose we don’t know how much memory is required?

– Consider a text editor: the user could use it to type

• a 10-word response, or

• a 1000-line program

• As the user types more and more characters,
 how do we keep allocating memory?

– All arrays are fixed in capacity,
 and yet the user can always keep typing no matter how large

– There are solutions, but they are awkward to use

6
Dynamic memory allocation

Limitations of static memory

• Is this a good program for a text editor?

int main();

int main() {

 char text[1000000]; // Allocate 1 MB

 char[0] = '\0';

 // Do something with this character array...

 return 0;

}

7
Dynamic memory allocation

Limitations of static memory

• This is an array is a horrible way of storing a text file:

– An e-mail response seldom requires more than 1000 characters

– J.R.R. Tolkien just finishes his 500,000 character text “The Hobit”

• Fortunately, it fits into our 1 MB file

– “The Lord of the Rings” does not…

– Suppose he finishes:

"Chapter I\nAN UNEXPECTED PARTY\n\nIn a hole in the
 ground there lived a hobbit. Not a nasty, dirty, wet
 hole, filled with the ends of worms and an ozy smell,
 nor yet a dry, bare, sandy hole with nothing in it to
 sit down on or to eat: it was a hobbit-hole, and that
 means comfort."

8
Dynamic memory allocation

Limitations of static memory

• Having finished everything…

– He discovers a typo

– Changing "ozy" to "oozy" requires that all remaining 499860
characters to be moved one array entry to the right…

– Suppose you have a similar document,
 and you want to make a search-and-replace of all British spellings
 of works with American spellings…

"Chapter I\nAN UNEXPECTED PARTY\n\nIn a hole in the
 ground there lived a hobbit. Not a nasty, dirty, wet
 hole, filled with the ends of worms and an ozy smell,
 nor yet a dry, bare, sandy hole with nothing in it to
 sit down on or to eat: it was a hobbit-hole, and that
 means comfort."

2020-10-01

3

9
Dynamic memory allocation

Dynamic memory

• We need some way of saying:

 We need memory,
 but we have to be able to determine how much
 memory is needed at run time,

 and we have to be able to change it…

• Question: Where can we get this memory?

– The memory required for a function call is just placed on top
memory required for the previous function call

– What happens if you need 3 bits, 1 byte, 37 bits, 42 bytes, or
2 400 000 bytes, which is enough for “The Lord of the Rings”?

10
Dynamic memory allocation

Dynamic memory

• Memory management is an issue dealt with by the operating system

– When you execute a program, it is the operating system that
allocates the memory for the call stack

– If you want memory,
 you must make a request to the operating system

• Question: How do we allow this transaction?

– We will ask the operating system for an integral number of bytes

• The operating system will then try to find memory to satisfy such a
request

11
Dynamic memory allocation

Dynamic memory

• Suppose that you ask for 4 bytes:

– Some memory is allocated specifically
for the program and literals in the
program

– The call stack is allocated near the
end of memory

• The compiler determines its use

– All other memory may be used for
dynamically allocated memory

• Also known as the heap

12
Dynamic memory allocation

Dynamic memory

• Suppose that you ask for 4 bytes:

– The operating system finds 4 bytes somewhere in the heap

2020-10-01

4

13
Dynamic memory allocation

Dynamic memory

• The operating system flags these as belonging to your program

– There are still 11 bytes left over, perhaps for some other request

14
Dynamic memory allocation

Dynamic memory

• How can you access this memory?

– How does the operating system tell you that these 4 bytes are yours
to use?

15
Dynamic memory allocation

Dynamic memory

• A common solution is to return the address:

– “Your 4 bytes are at memory location 0x000009bc0a93258”

16
Dynamic memory allocation

Dynamic memory

• The operating system could return this address, and we can assign
this address to a pointer

• Question: how many bytes do you need?

– You could calculate it, but…C++ makes it easier

– The compiler does the work

2020-10-01

5

17
Dynamic memory allocation

The new operator

• The keyword new defines a unary operator in C++:

– It takes a type as an operand

• Optionally, you can give the item an initial value

– It requests sufficient memory from the operating system for the type

– It returns the address supplied by the operating system

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{ 42 };

 std::cout << p_int << std::endl;

 return 0;

}

18
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

p_int is a local variable
 – It occupies 8 bytes on the stack
 – It is initialized with 0x000…000

⋮
0x0000009bc0a93257 Allocated to another executing program
0x0000009bc0a93258
0x0000009bc0a93259
0x0000009bc0a9325a
0x0000009bc0a9325b
0x0000009bc0a9325c

⋮

19
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The compiler knows an int is 4 bytes
 – Behind the scene,
 a system call is made requesting 4 bytes

⋮
0x0000009bc0a93257
0x0000009bc0a93258
0x0000009bc0a93259
0x0000009bc0a9325a
0x0000009bc0a9325b
0x0000009bc0a9325c

⋮

20
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The operating system finds 4 bytes and
flags it as allocated to your program
 – It returns 0x9bc0a93258

⋮
0x0000009bc0a93257
0x0000009bc0a93258 Allocated to your executing program
0x0000009bc0a93259
0x0000009bc0a9325a
0x0000009bc0a9325b
0x0000009bc0a9325c

⋮

2020-10-01

6

21
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The new operator now initializes
that memory with the value 42

⋮
0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

22
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The value 0x9bc0a93258 is assigned
to the local variable 'p_int'

⋮
0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

23
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The value 0x9bc0a93258 is printed to the console

⋮
0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

24
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}
Your program exits

⋮
0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

2020-10-01

7

25
Dynamic memory allocation

The new operator

• Let’s see what happens:
int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 return 0;

}

The operating system realizes you have some
memory allocated, so it flags it as unallocated
 – The memory still stores the value 42

⋮
0x0000009bc0a93257
0x0000009bc0a93258 00000000 Now available again for another request
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

26
Dynamic memory allocation

The new operator

• We can even initialize the pointer if appropriate:

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{ new int{42} };

 std::cout << p_int << std::endl;

 return 0;

}

27
Dynamic memory allocation

Using the allocated memory

• Let’s now use this memory

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{ new int{42} };

 std::cout << p_int << std::endl;

 std::cout << *p_int << std::endl;

 *p_int = 91;

 std::cout << *p_int << std::endl;

 return 0;

}

28
Dynamic memory allocation

Using the allocated memory

• Let’s now use this memory

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{ new int{42} };

 std::cout << p_int << std::endl;

 std::cout << *p_int << std::endl;

 *p_int = 91;

 std::cout << *p_int << std::endl;

 return 0;

}
⋮

0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 00101010
0x0000009bc0a9325c

⋮

Output:
 0x9bc0a93258

 42

2020-10-01

8

29
Dynamic memory allocation

Using the allocated memory

• Let’s now use this memory

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{ new int{42} };

 std::cout << p_int << std::endl;

 std::cout << *p_int << std::endl;

 *p_int = 91;

 std::cout << *p_int << std::endl;

 return 0;

}
⋮

0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 01011011
0x0000009bc0a9325c

⋮

Output:
 0x9bc0a93258
 42

30
Dynamic memory allocation

Using the allocated memory

• Let’s now use this memory

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{ new int{42} };

 std::cout << p_int << std::endl;

 std::cout << *p_int << std::endl;

 *p_int = 91;

 std::cout << *p_int << std::endl;

 return 0;

}
⋮

0x0000009bc0a93257
0x0000009bc0a93258 00000000 Allocated to your executing program
0x0000009bc0a93259 00000000
0x0000009bc0a9325a 00000000
0x0000009bc0a9325b 01011011
0x0000009bc0a9325c

⋮

Output:
 0x9bc0a93258
 42

 91

31
Dynamic memory allocation

The new operator

• Note that the operating system cleans up your mess after your
program exits

– Is this a good idea?

– Suppose you open a tab on your web browser

• That tab requires memory to be dynamically allocated

– A lot of memory if it is, for example, YouTube

– Suppose you now close that tab…

• Is it necessary that that memory remain allocated to the browser?

32
Dynamic memory allocation

The delete operator

• Just like programs can request memory, programs are able to
explicitly tell the operating system when that memory is no longer
needed

int main() {

 // p_int is a local variable capable of

 // storing an address

 int *p_int{};

 p_int = new int{42};

 std::cout << p_int << std::endl;

 delete p_int;

 p_int = nullptr;

 return 0;

}

The address stored in p_int
 is sent to the operating system

Next, we want to forget this address,
 so we set p_int to the zero address

2020-10-01

9

33
Dynamic memory allocation

The delete operator

• The delete operator simply sends the address to the operating system,
which then flags that memory as no longer allocated to your program

– You, however, through 'p_int' are still aware of that address

int main() {

 int *p_int{new int{42}};

 std::cout << p_int << std::endl;

 delete p_int;

 std::cout << p_int << std::endl;

 p_int = nullptr;

 std::cout << p_int << std::endl;

 return 0;

}

Output:

0x12cb010
0x12cb010
0x0

34
Dynamic memory allocation

Looking ahead

• There are many possible issues with pointers and dynamic memory
allocation

– This issues cause fear for many students

• Over the next few lectures, we will address a few of this issues

– Hopefully, these will give you the confidence necessary to
understand this fundamental aspect of programming

35
Dynamic memory allocation

Summary

• Following this lesson, you now

– Understand the limitations of local variables

– Know that memory can be allocated at run time

• Known as dynamic memory allocation

– Are familiar with the new and delete operators for allocation
memory

36
Dynamic memory allocation

References

[1] https://en.wikipedia.org/wiki/Pointer_(computer_programming)

2020-10-01

10

37
Dynamic memory allocation

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

38
Dynamic memory allocation

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

